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Summary. Additive genetic components of variance and 
narrow-sense heritabilities were estimated for flowering 
time (FT) and cut-flower yield (Y) for six generations of 
the Davis Population of gerbera using Derivative-Free 
Restricted Maximum Likelihood (DFRML). Additive ge- 
netic variance accounted for 54% of the total variability 
for FT and 30% of the total variability for Y. The herita- 
bility of FT (0.54) agreed with previous ANOVA-based 
estimates. However, the heritability of Y (0.30) was sub- 
stantially lower than estimates using ANOVA. The ad- 
vantages of DFRML and its applications in the estima- 
tion of components of genetic variance and heritabilities 
of plant populations are discussed. 
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Introduction 

Historically, components of genetic variance and herita- 
bility for plant populations have been estimated from 
least squares or ANOVA-based methods (Falconer 1989) 
on the basis of particular experimental designs, i.e., NCII 
(Comstock and Robinson 1948). For unbalanced data, 
components of variance have been estimated from qua- 
dratics that mimic those of a balanced ANOVA. While 
this approach offers unbiased estimates and computation 
is relatively simple, it offers few other desirable statistical 
properties, and basic assumptions are often violated 
when fitting a genetic model. For example, when estimat- 
ing the components of genetic variance from ANOVA, 
individuals in the population are often assumed to be 

Correspondence to: Y. Yu 

independent and unselected (Becker 1981). However, it is 
common in breeding programs to select parents to im- 
prove traits rather than choose them at random. In addi- 
tion, some inbreeding will result in any finite population. 

Maximum likelihood (ML) has been used extensively 
in animal breeding and human genetics (e.g., Meyer 1983; 
Henderson 1984; Lange et al. 1976). The use of ML for 
the estimation of variance components in quantitative 
genetics was introduced by Hartley and Rao (1967) and 
later modified by Patterson and Thompson (1971) to 
restricted maximum likelihood (RML). Although ML is 
not uniformly ideal, it is an intuitively appealing strategy 
for point estimation. Sorenson and Kennedy (1984) sug- 
gested that RML could eliminate the selection bias inher- 
ent in ANOVA-based estimates. Since RML utilizes in- 
formation from relatives, it is not constrained by 
experimental design, provided pedigrees are known. 
However, computation has been time-consuming, and 
RML estimates have not been practical for large unbal- 
anced data sets. Recently, Grasser et al. (1987) presented 
DFRML, a derivative-free approach, which simplifies 
computation considerably. Computer programs (e.g., 
Meyer 1988) make the computation of DFRML practi- 
cal, even for a large data set. 

This study was designed to: (1) estimate the compo- 
nents of genetic variance and heritability of flowering 
time and cut-flower yield for the Davis Population of 
gerbera, using DFRML, and (2) compare the results from 
DFRML to those obtained from ANOVA-based meth- 
ods. 

Materials and methods 

Population and traits 

Samples were taken from generations 8 through 13 of the Davis 
Population of gerbera (Gerbera hybrida, Compositae). Individu- 
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al plants were grown at random in a controlled-temperature 
greenhouse in a uniform sand/organic substrate and irrigated 
with liquid fertilizer. Parents were selected each year on the basis 
of a Smith-Hazel index (Smith 1936; Hazel and Lush 1942) and 
crossed in an NCII  design (except for generation 9), producing 
one breeding cycle per year. Descriptive parameters are shown 
in Table 1 (for details, see Harding et al. 1981, 1985; Yu 1991). A 
complete pedigree was maintained for these generations. 

The two traits analyzed in this study are flowering time (FT) 
and cut-flower yield (Y). FT is defined as the number of days 
from seeding to harvest stage; Y is the number of flowers har- 
vested over a 24-week period beginning with the first week in 
September for each generation (Yu et al. 1991). In the generations 
of this study, Y was always subjected to selection, but FT was 
not selected directly. 

Table 1. Descriptive parameters of generations 8 through 13 of 
the Davis population of gerbera 

Gene- Year grown The number of 
ration 

Parent Crossing Full-sib Popula- 
plants blocks families tion size 

8 1982-83 80 10 142 397 
9 1983-84 50 1 100 399 

10 1984-85 20 2 49 391 
1985 86 No plants grown;seedsstored for 1 year 

11 1986-87 40 4 71 552 
12 1987-88 40 4 62 552 
13 1988-89 40 4 I00 735 

Statistical analysis 
RML estimates of variance components requires the generalized 
inverse of the coefficient matrix of the mixed model equation 
(MME) (Henderson 1984). This is a daunting task, even for small 
sets of data. A more efficient algorithm (DFRML) makes use of 
Gaussian elimination at one-third the computational effort of 
inversion. This saving makes application to large data sets 
tractable. A complete description of the D F R M L  algorithm is 
presented by Graser et al. (I 987). A brief review of this approach 
is informative. It follows the additive genetic model: 

y=Xb+Za+e (1) 
where y is a n x 1 vector of observations, b is a p x I vector of 
unknown fixed effects (e.g., treatment), a is a q x 1 vector of 
unobservable additive genetic effects, and e is an n x 1 vector of 
residuals. X and Z are known incidence matrices relating obser- 
vations in y to effects in b and a, where the order of a (q) can 
exceed the number of observations (n). This model assumes a 
and e are multivariate normally distributed random variables 
with null means and 

A4 o AZs 
Var = O R 

Z A  a~ R V (T2 (2) 

where A is the matrix of numerator relationships, cr~ 2 is the 
additive genetic variance, (T2 is the residual variance, R is the 
matrix of environmental covariance (R=I) ,  and 

V = ( I + Z A Z '  r) 

for r=~r~/(T~, and h 2 =r/(1 +r). The objective of D F R M L  is to 
find those values of a~ and (T2 (and thus r) that maximize the 
multivariate normal likelihood function. This objective is no 
different than RML estimation under any other algorithm, i.e., 
for a fixed prior value of r, 

y' Py  
2 

(T e - -  
N - -  rank (X) (3) 

where P = V-  1 _ V-  1 X (X'V- 1 X)- 1 X' V-  1; therefore, a~ z = r (T2. 
The simplicity of D F R M L  is finding a means of computing 

y' Py  that avoids evaluating V-1. To do so, consider the parti- 
tioned matrix 

X'y X'X X 'Z  1 Z'y yf, y 
Z'X Z ' Z + A - -  r = C 

y 'X y 'Z  y y 

(4) 

Table 2. Components of variance and heritabilities of flowering 
(FT) and cut-flower yield (Y) for the Davis Population of ger- 
hera 

2 2 2 h:,~ Traits N crp cr a e 

FT 3,021 149.07 79.91 69.16 0.53 
Y 3,029 84.84 25.45 59.39 0.30 

where C and f are the left-hand and right-hand sides of the mixed 
model equations, respectively. Algebraically, if C is absorbed 
into y'y, the total sum of squares is replaced with y'Py. Smith 
and Grasser (1986) show that the absorption of C does not 
require inversion, but can be accomplished through Gaussian 
elimination. Thus, for a fixed value of r, we build an array as in 
Eq. 4, absorb C row by row to compute y 'Py,  and from that 

2 The next step is to evaluate that part of the estimate or, a and (Te. 
log likelihood which depends upon r, i.e., 

L= --12[{N--rank(X)--q} log(T~ +log,Cl+qlog(T2 + ~ ( 5  ) 
ae J 

The value of r that maximizes Eq. 5 can be found by iteration. 
Only log ICI is not immediately available. However, during the 
row by row absorption, log ICI can be found as the sum of the 
logs of the diagonal pivot elements of C. Hence, for a fixed r, C 
is absorbed while computing log IC[, y ' P y  is used to estimate cr~, 
and Eq. 5 can be evaluated. Iteration is continued through pos- 
sible values of r, computing a~, a 2, and Eq. 5 until a maximum 
value of r is found. This provides RML estimates of e~, cr~ and 
h z" 

The D F R M L  calculation was carried out separately for 
traits FT and Y using a VAX computer wtih a program by Meyer 
(1988). In each case, the analysis was based on a complete data 
matrix of all individuals ( > 3,000) from generations 8 through 13. 

Results 

The  results of  D F R M L  analyses  are shown in 'Fable 2. 

The  es t imate  of  the addi t ive  genetic  c o m p o n e n t  for F T  

was 79.91, which is 54% of the to ta l  pheno typ ic  variance;  

the r ema inde r  of  4 6 %  is var ious  non-add i t ive  and  envi- 

r o n m e n t a l  variances.  The  es t imate  for Y was 84.84, which 
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is 30% of the total variance; the non-additive and envi- 
ronmental  effects accounted for 70%. 

Acknowledgements. The authors wish to thank Karin Meyer for 
the use of her DFRML programs and Curt Finley for his assis- 
tance in running the program. 

Discussion 

The estimate of heritability for FT was 0.54 using 
D F R M L  for the composite data matrix from generations 
8 through 13. Estimates of heritability for this trait for the 
same generations have been reported (Yu et al. 1991) 
using the method of least squares, G L M  (SAS 1988). 
Individual estimates obtained from each generation using 
the N C I I  design ranged from 0.27 to 0.67, with a mean of 
0.50; there was little difference between estimates made 
using D F R M L  or G L M / N C I I .  The estimate of heritabil- 
ity for Y was 0.30 using DFRML.  The mean of estimates 
of heritability for this trait was 0.46 over the same gener- 
ations using G L M / N C I I  (Yu 1991). Thus, there is an 
appreciable difference in heritabilities for Y between the 
methods of D F R M L  and G L M / N C I I .  

Since Y was included in the selection indices, a selec- 
tion differential was determined from indices over gener- 
ations 8 through 13 (from Yu 1991), and realized herita- 
bility was estimated to be 0.26. Therefore, it appears that 
the D F R M L  estimate (0.30) more accurately predicts re- 
sponse to selection for Y (0.26) than does the G L M / N C I I  
estimate (0.46). This may result from the fact that an 
assumption of no selection is required by the G L M / N C I I  
method, while estimates from D F R M L  are free of this 
assumption (Sorenson and Kennedy 1984; Gianola and 
Fernando 1986). 

Estimates may also differ because D F R M L  accounts 
for all of the genetic relationships in the entire data ma- 
trix A, and G L M / N C I I  only accounts for full- and half- 
sib relationships within sub-matrices from each genera- 
tion. However, genetic information beyond full- and 
half-sibs may add little precision in this study because 
more than 3,000 individuals were included. Estimates of 
heritability for FT, which was not included in the selec- 
tion indices, were nearly identical when calculated using 
either D F R M L  or G L M / N C I I .  Estimates of heritability 
for Y, which was indexed in the selection indices, were 
much higher when calculated with G L M / N C I I .  This sug- 
gests that the assumption of no selection in the G L M /  
N C I I  procedure is important. For  this reason, estimates 
of heritability for the selected trait Y reported by Harding 
et al. (1985) may be biased. The D F R M L  estimate of 0.30 
is supported by the reported realized heritability of 0.26. 
Both D F R M L  and G L M / N C I I  provided similar esti- 
mates of heritability for flowering time, a trait that was 
not included in the selection indices. 

The results of this study lead us to recommend that 
plant breeders use D F R M L  when studying a trait that 
has been subjected to selection. 
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